Древо жизни завивается в кольца

Рис. 1. «Прокариотическое кольцо жизни». Схема ранней эволюции земной жизни, отражающая родственные связи пяти групп прокариот (актинобактерии, грамотрицательные, клостридии, археи, бациллы). Согласно гипотезе Д. Лейка, грамотрицательные бактерии с двойной клеточной мембраной возникли в результате слияния (эндосимбиоза) древней актинобактерии с древней клостридией. Схема с цветными стрелками — из обсуждаемой статьи Лейка в Nature. К этой схеме тонкими линиями пририсовано «эукариотическое кольцо жизни» (термин предложен ранее Риверой и Лейком, см.: Rivera, M. C. & Lake, J. A. The ring of life: evidence for a genome fusion origin of eukaryotes // Nature. 2004. V. 431. P. 152–155). Грамотрицательные бактерии подразделились на множество групп, одна из которых (альфа-протеобактерии) дала начало митохондриям, а другая (цианобактерии) — пластидам эукариот. Эукариоты появились в результате слияния археи с этими грамотрицательными бактериями
Рис. 1. «Прокариотическое кольцо жизни». Схема ранней эволюции земной жизни, отражающая родственные связи пяти групп прокариот (актинобактерии, грамотрицательные, клостридии, археи, бациллы). Согласно гипотезе Д. Лейка, грамотрицательные бактерии с двойной клеточной мембраной возникли в результате слияния (эндосимбиоза) древней актинобактерии с древней клостридией. Схема с цветными стрелками — из обсуждаемой статьи Лейка в Nature. К этой схеме тонкими линиями пририсовано «эукариотическое кольцо жизни» (термин предложен ранее Риверой и Лейком, см.: Rivera, M. C. & Lake, J. A. The ring of life: evidence for a genome fusion origin of eukaryotes // Nature. 2004. V. 431. P. 152–155). Грамотрицательные бактерии подразделились на множество групп, одна из которых (альфа-протеобактерии) дала начало митохондриям, а другая (цианобактерии) — пластидам эукариот. Эукариоты появились в результате слияния археи с этими грамотрицательными бактериями

Известный специалист по эволюции микробов Джеймс Лейк из Калифорнийского университета привел веские аргументы в пользу того, что наиболее успешная и разнообразная группа прокариот, сыгравшая ключевую роль в развитии жизни на Земле, — грамотрицательные бактерии — возможно, возникла в результате слияния в единый организм двух более примитивных бактерий: актинобактерий и клостридий. Если эта гипотеза верна, схема ранней эволюции прокариот перестает быть похожей на дерево и приобретает вид кольца.

1. Дерево или клубок?

Со времен Дарвина эволюцию и родственные связи организмов схематически изображают в виде деревьев. «Древесная» форма эволюционных реконструкций основана на допущении об исключительно вертикальной природе наследственности (потомки получают все свои гены только от родителей). Однако в последние десятилетия стала ясна огромная роль горизонтальной передачи наследственного материала, когда организмы получают гены не только от родителей, но и от других организмов, в том числе и совершенно им не родственных (см.: Горизонтальный перенос генов и эволюция). Эволюционные реконструкции, построенные с учетом горизонтального генетического обмена, похожи не на деревья, а на спутанные клубки, сети или кольца (см.: На что похожа эволюция: на ветвящееся дерево или на сеть?).

Горизонтальный генетический обмен очень широко распространен у одноклеточных (особенно прокариот) и гораздо реже встречается у многоклеточных. Он может осуществляться множеством способов, включая перенос генов вирусами (см. трансдукция) и всасывание бактериями молекул ДНК из окружающей среды (см. трансформация). Но самым радикальным вариантом горизонтального генетического обмена является полное слияние геномов двух неродственных организмов.

2. Симбиогенез

Объединение двух геномов может произойти, в частности, в результате эндосимбиоза, то есть такого симбиотического объединения организмов, при котором один из них постоянно живет внутри другого.

Общепризнано, что именно таким — эндосимбиотическим — путем появились первые эукариоты (высшие организмы, в клетках которых имеется ядро). Геном эукариот исходно имеет химерную природу, поскольку он образовался путем слияния геномов нескольких неродственных прокариот, объединившихся в единый организм около 2 млрд лет назад (см.: А. В. Марков, А. М. Куликов. Происхождение эукариот как результат интеграционных процессов в микробном сообществе).

Теория симбиогенетического происхождения эукариот была неопровержимо доказана и стала общепризнанной лишь в последние десятилетия, а до этого научное сообщество долго отказывалось ее принимать. Достаточно сказать, что статья Линн Маргулис (Lynn Margulis) с первым убедительным изложением основ этой теории была отвергнута более чем дюжиной научных журналов, прежде чем ее опубликовал в 1966 году журнал, специализирующийся на спорных гипотезах (Journal of Theoretical Biology).

Судьба новой, не менее революционной гипотезы Джеймса Лейка, очевидно, будет далеко не столь драматичной, поскольку ее напечатал журнал Nature — благо Лейк ранее неоднократно публиковался в этом журнале и известен как крупный специалист по ранним этапам эволюции.

3. Гипотеза Лейка

По мнению Лейка, задолго до появления эукариот произошел еще один акт симбиогенеза, имевший весьма грандиозные последствия. Лейк утверждает, что крупнейшая и наиболее разнообразная группа прокариот — грамотрицательные бактерии — возникла в результате эндосимбиоза двух других, более древних и примитивных бактерий: актинобактерии (Actinobacteria) и клостридии (Clostridia).

Чтобы понять суть гипотезы, равно как и ее красоту и «революционность», нужно вкратце познакомиться с главными героями — грамотрицательными бактериями (они же — бактерии с двойной мембраной).

В настоящее время не существует общепринятой классификации прокариот. Однако, по мнению Лейка, прокариоты отчетливо подразделяются на пять больших естественных (то есть происходящих каждая от своего предка) группировок. Это археи, бациллы (и их родня), клостридии (и примкнувшие к ним), актинобактерии и грамотрицательные бактерии. Лейк не разделяет общепринятого мнения о том, что всех прокариот нужно делить сначала на архей и бактерий, а потом уже бактерий делить на более мелкие группировки. Результаты исследований Лейка и его коллег, основанные, в частности, на анализе делеций (выпавших кусков) и вставок в некоторых медленно эволюционирующих генах, свидетельствуют о том, что потомки «последнего общего предка всего живого» (см.: LUCA) разделились сначала не на предков бактерий и предков архей (как считает большинство), а на предков актинобактерий и на предков эволюционной линии, включающей клостридий, бацилл и архей (см. рис. 1).

Грамотрицательные бактерии занимают среди прокариот особое место, причем по ряду признаков их можно назвать «высшими», «наиболее эволюционно продвинутыми» или «самыми высокоорганизованными» прокариотами. Грамотрицательные бактерии очень многочисленны и разнообразны. К ним относятся цианобактерии, обогатившие земную атмосферу свободным кислородом около 2,4 млрд лет назад и давшие начало пластидам эукариот, а также разнообразные протеобактерии, в том числе альфа-протеобактерии, которые, по-видимому, первыми «изобрели» наиболее эффективный вариант кислородного дыхания и дали начало митохондриям эукариот. Главным отличием грамотрицательных бактерий от всех остальных (грамположительных) прокариот является более сложное строение клеточной оболочки. У грамположительных прокариот оболочка клетки состоит из одной липидной мембраны, снаружи от которой находится толстый слой пептидогликана. У грамотрицательных бактерий снаружи от пептидогликанового слоя находится еще одна мембрана, имеющая довольно сложное и специфическое строение. В учебниках по микробиологии обычно пишут, что внутренняя мембрана грамотрицательных бактерий гомологична единственной мембране грамположительных бактерий (то есть происходит от нее), а наружная возникла позже, как некое вторичное дополнение к исходно одномембранной клеточной оболочке более древних грамположительных бактерий.

С другой стороны, двойная мембрана неизбежно наводит на мысли об эндосимбиозе. Что если некая бактерия когда-то приобрела внутриклеточного симбионта — другую бактерию, и они впоследствии слились в единый организм? В этом случае можно ожидать, что получившаяся химерная клетка будет иметь двойную мембрану. Мембрана эндосимбионта станет внутренней мембраной объединенного организма, а мембрана хозяина — наружной. Но это, конечно, не доказательство, а лишь некий намек на возможное направление поиска. Основой для гипотезы Лейка стали совсем другие факты, полученные в ходе анализа распределения семейств белков по пяти основным группировкам прокариот.

4. Статистические обоснования гипотезы

Хотя практически все эксперты уже признали важнейшую роль горизонтального генетического обмена в эволюции прокариот, необходимые методологические и практические выводы из этого пока не сделаны. Это проявляется, прежде всего, в том, что весь мощнейший математический аппарат и сложнейшее программное обеспечение, разработанное специально для построения эволюционных реконструкций на основе молекулярно-генетических данных, до сих пор ориентированы на построение эволюционных деревьев, а вовсе не клубков, сетей или колец. Подавляющее большинство компьютерных программ, используемых биологами для воссоздания путей эволюции, получают на выходе нуклеотидные последовательности ДНК сравниваемых организмов (или другие их признаки), а на выходе выдают деревья — и ничего кроме деревьев. Получается, что на словах ученые уже признали, что эволюция прокариот не была древовидной, а на деле по-прежнему продолжают исходить из предположения о ее древовидности. Тем самым неявно допускается, что роль горизонтального переноса в эволюции прокариот была пренебрежимо мала — хотя неправомерность такого допущения уже очевидна для всех.

Джеймс Лейк одним из первых стал разрабатывать новые статистические методы, позволяющие делать осмысленный выбор между древовидными и «кольцевыми» эволюционными реконструкциями. Эти методы ранее были успешно проверены на эукариотах. В результате химерная природа эукариотического генома получила новое убедительное подтверждение, а схему, иллюстрирующую происхождение эукариот путем слияния нескольких разных прокариот в единый организм, стали называть «кольцом жизни» (в противовес общепринятому термину «древо жизни»; см.: Rivera, M. C. & Lake, J. A. The ring of life: evidence for a genome fusion origin of eukaryotes // Nature. 2004. V. 431. P. 152–155).

Теперь Лейк применил эти методы к пяти вышеперечисленным группам прокариот. Это позволило количественно оценить вероятность (правдоподобие) альтернативных эволюционных схем. Оказалось, что наилучшее из возможных деревьев имеет значительно более слабую статистическую поддержку, чем наилучшая из возможных схем с кольцами (см. рис. 2).

Рис. 2. Две альтернативные схемы эволюции прокариот. Слева — лучшая из возможных кольцевых схем, справа — лучшая из возможных древовидных схем. R — археи, A — актинобактерии, D — грамотрицательные (бактерии с двойной мембраной), C — клостридии, B — бациллы. Рисунок из обсуждаемой статьи в Nature
Рис. 2. Две альтернативные схемы эволюции прокариот. Слева — лучшая из возможных кольцевых схем, справа — лучшая из возможных древовидных схем. R — археи, A — актинобактерии, D — грамотрицательные (бактерии с двойной мембраной), C — клостридии, B — бациллы. Рисунок из обсуждаемой статьи в Nature

Автор опирался в основном на данные по наличию (или отсутствию) различных семейств белков в пяти группах прокариот. Наиболее информативными в данном случае являются такие семейства белков, которые есть у трех из пяти групп и отсутствуют у двух остальных. Всего существует 10 возможных вариантов распределения таких белковых семейств по пяти группам (есть у групп 1, 2, 3 и нет у групп 4 и 5; есть у групп 1, 2, 4 и нет у групп 3 и 5, и т. д.). Если верна левая (кольцевая) схема на рис. 2, то следует ожидать, что из этих 10 вариантов пять будут встречаться редко, а пять — часто. Часто должны встречаться такие семейства белков, которые есть одновременно у актинобактерий (A) и грамотрицательных (D) и (или) одновременно у клостридий (C) и грамотрицательных (D). Семейств белков, распределенных иначе, должно быть мало. Оказалось, что это предсказание кольцевой схемы выполняется с абсолютной точностью: все пять распределений, которые должны встречаться часто, действительно встречаются часто, и наоборот — все пять распределений, которые должны встречаться редко, действительно встречаются редко.

Древовидная схема (правая на рис. 2) дает несколько иные предсказания относительно частоты встречаемости каждого из 10 распределений, и эти предсказания существенно расходятся с реальностью.

На основе этого и ряда других статистических тестов Лейк делает вывод, что кольцевая схема, в которой грамотрицательные бактерии происходят путем слияния актинобактерии с клостридией, является намного более правдоподобной, чем любая из возможных древовидных схем.

5. Почему именно эндосимбиоз?

Статистические тесты, о которых говорилось в предыдущем разделе, фактически говорят лишь о том, что геном грамотрицательных бактерий имеет химерное происхождение, то есть образовался в результате объединения генов клостридий и актинобактерий. Это могло произойти не только путем эндосимбиоза, но и иными, менее драматическими путями. Например, какая-нибудь клостридия могла понемногу заимствовать гены актинобактерий до тех пор, пока не набрала их очень много. При этом строение клетки постепенно менялось, в том числе появилась и вторая мембрана. Разумеется, могло быть и наоброт: актинобактерия могла позаимствовать много генов у клостридий. Можно предположить и простое слияние клеток с последующим объединением геномов (хотя у современных прокариот, в отличие от эукариот, клетки сливаться не могут). Почему же Лейк считает, что имел место именно эндосимбиоз — то есть либо актинобактерия поселилась внутри клостридии, либо наоборот? Собственно, единственным весомым аргументом в пользу этого предположения является двойная мембрана грамотрицательных бактерий, о чем говорилось выше. Эндосимбиоз дает очень простое и красивое объяснение появлению двойной мембраны (наружная мембрана принадлежит хозяину, внутренняя — симбионту). У этой гипотезы есть проверяемые следствия — например, следует ожидать, что одна из двух мембран сохранила в себе что-то, характерное для клостридий, а вторая — для актинобактерий. Так что будущее обязательно покажет, верна ли догадка Лейка.

Слабым местом гипотезы является тот факт, что для современных прокариот эндосимбиозы не характерны. Этим прокариоты радикально отличаются от эукариот, которые многократно в ходе своей истории обзаводились разнообразными внутриклеточными симбионтами. Однако и прокариоты все-таки не совсем «безнадежны» в этом отношении. Например, есть веские основания полагать, что один из многочисленных внутриклеточных симбионтов тлей представляет собой двух «вложенных» друг в друга бактерий: бета-протеобактерию, внутри которой живут гамма-протеобактериальные симбионты (Carol D. von Dohlen et al. Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts // Nature. 2001. V. 412. P. 433–436). Чисто прокариотические эндосимбиозы неизвестны, однако описана одна чрезвычайно интересная симбиотическая система, которая показывает, с чего может начинаться такой симбиоз. Речь идет о бактериальном комплексе, известном под названием Chlorochromatium aggregatum. Центральный компонент этого комплекса представляет собой подвижную гетеротрофную (питающуюся органикой) бета-протеобактерию. Вокруг нее аккуратными стопками располагаются от 10 до 60 фотосинтезирующих зеленых серных бактерий. Все компоненты этого симбиотического комплекса соединены выростами наружной мембраны центральной бета-протеобактерии. Предполагается, что у всех компонентов комплекса имеется общее периплазматическое (межмембранное) пространство. Смысл этого содружества в том, что подвижная бета-протеобактерия перетаскивает всю компанию в места, благоприятные для жизни привередливых серных бактерий, а серные бактерии занимаются фотосинтезом и обеспечивают пищей и себя, и бета-протеобактерию. Заметим, что в обоих приведенных примерах все компоненты симбиотических комплексов являются грамотрицательными бактериями.

Рис. 3. Прокариотические симбиозы. a — внутриклеточные симбионты тли — бета-протеобактерии (β), внутри которых живут гамма-протеобактерии (γ). Буквой N обозначено ядро клетки насекомого. b — фотосинтезирующий прокариотический комплекс Chlorochromatium aggregatum, состоящий из центральной бета-протеобактерии (β) и периферических зеленых серных бактерий (GSB). Рис. из обсуждаемой статьи в Nature
Рис. 3. Прокариотические симбиозы. a — внутриклеточные симбионты тли — бета-протеобактерии (β), внутри которых живут гамма-протеобактерии (γ). Буквой N обозначено ядро клетки насекомого. b — фотосинтезирующий прокариотический комплекс Chlorochromatium aggregatum, состоящий из центральной бета-протеобактерии (β) и периферических зеленых серных бактерий (GSB). Рис. из обсуждаемой статьи в Nature

Если гипотеза Лейка верна, то целенаправленный поиск должен привести к тому, что новые доказательства посыплются, как из рога изобилия — как это происходит с симбиогенетической теорией происхождения эукариот со времен публикации статьи Маргулис. Сам Лейк вскользь указывает на одно дополнительное подтверждение, связанное с эволюцией фотосинтеза. Дело в том, что среди прокариот фотосинтез встречается только у некоторых клостридий, а также у многих грамотрицательных бактерий (цианобактерий, пурпурных протеобактерий, зеленых серных бактерий и др). Ни одна из древовидных эволюционных реконструкций не могла объяснить такое странное распределение способности к фотосинтезу среди прокариот — даже с учетом возможного горизонтального переноса. Для фотосинтеза необходима уйма генов, и приобрести их все разом путем обычного горизонтального переноса весьма трудно. Кольцевая схема Лейка, напротив, хорошо объясняет эту ситуацию. По-видимому, изобретателями фотосинтеза были какие-то древние клостридии. От этих клостридий фотосинтез достался по наследству первым грамотрицательным бактериям (которые, следовательно, изначально были фотосинтезирующими организмами). В дальнейшем во многих группах грамотрицательных бактерий фотосинтез был вторично утрачен. Отсюда — еще одно проверяемое следствие: можно ожидать, что, порывшись хорошенько в геномах нефотосинтезирующих грамотрицательных бактерий, мы найдем там следы древних фотосинтетических систем.

Гипотеза Лейка кажется очень логичной, она делает общую картину ранней эволюции более стройной и красивой. Получается, что важнейшее в истории земной жизни эволюционное событие — появление эукариот путем симбиогенеза — было подготовлено другим, более древним симбиогенетическим событием, которое к тому же создало предпосылки для обогащения атмосферы кислородом. Однако следует признать, что фактов, подтверждающих эту гипотезу, пока еще маловато. Будем надеятся, что публикация в Nature привлечет внимание исследователей к проблеме происхождения грамотрицательных бактерий, и скоро станет ясно, правильно ли угадал Лейк или попал пальцем в небо.

Источник: James A. Lake. Evidence for an early prokaryotic endosymbiosis // Nature. 2009. V. 460. P. 967–971.

См. также:

Александр Марков


27
Показать комментарии (27)
Свернуть комментарии (27)

  • feb7  | 30.08.2009 | 13:22 Ответить
    Спасибо за познавательную статью. Лейк выдвинул гипотезу достаточно радикальную, подождем и посмотрим, как будут развиваться события по ее доказательтству или опровержению. Я не сомневаюсь, что на этой ниве нас ждет интересный урожай)))))
    Ответить
  • Combinator  | 30.08.2009 | 18:20 Ответить
    Всё это очень интересно, но как тогда объяснить тот факт, что актинобактерии аэробы? Если они появились до цианобактерий, откуда взялся кислород для их жизнедеятельности?
    Ответить
    • myugor > Combinator | 09.09.2009 | 14:23 Ответить
      Далеко не все современные актинобактерии s.l. - аэробы. Прогуглите. И речь, конечно, идет не о современных актинобактериях.
      Судя по всему, актинобактерии предполагаются хозяевами (фототрофы - среди клостридий, а фотосинтетический аппарат - во внутренней, т.е. гостевой, мембране). Так что они - жертвы агрессивного паразитизма клостридий, близких к Heliobacteraceae.
      Честно говоря, я этого себе представить не могу. Даже как механизм происхождения Procyanobacteria, а тем более Chloroflexi.
      Ответить
    • Rattus > Combinator | 20.09.2018 | 08:12 Ответить
      Среди актинобактерий полно облигатных анаээробов - самый ближайший пример - бифидобактерии и пропионибактерии. Но и облигатных аэробов предостаточно - опять таки ближайший пример - микрококк - обитатель пыли.
      Ответить
  • xronik  | 30.08.2009 | 18:42 Ответить
    ерунда какая-то.
    во-первых совершенно непонятно каким каком одна бактерия могла попасть в другую, к тому же Грам-положительную (!) - где механизм этого явления?
    во-вторых естественная компентеция позволяет и сейчас "понемногу заимствовать гены актинобактерий" - ну и?

    почитаешь такие статьи и подумаешь, что теория креационизма будет и стройней, и логичней...
    Ответить
    • feb7 > xronik | 30.08.2009 | 19:29 Ответить
      Совершенно с Вами согласен. Главное, думать ни о чем не надо, выдвигать гипотезы, отстаивать их, ставить эксперименты, чтобы подтвердить или опровергнуть....

      А тут все стройно и логично: "и понял Он, что это хорошо")))))))

      Если серьезно, тут же сказано - гипотеза. Обзывать ее ерундой можете сколько хотите, но только я нигде не видел изложенной ТЕОРИИ креационизма. Антидарвинистских сайтов, похожих как две капли, целый тырнет, это да. Может, ссылкой поделитесь?
      Ответить
      • xronik > feb7 | 30.08.2009 | 22:13 Ответить
        так ведь о вере я и говорю - напечатали в "натуре", а там хоть трава не расти. может быть вы видели в этой заметкe экспериментальное подтверждение? подскажите где, я проглядел...
        ну и чем это лучше креационистских теорий/гипотез?
        Ответить
        • feb7 > xronik | 30.08.2009 | 22:34 Ответить
          Вы совершенно правы. В том плане, что экспериментов пока нет. В статье ведь о гипотезе и говорится. Теперь, когда гипотеза выдвинута, начнется серия экспериментов по опровержению или ее подтверждению. Подтвердится - хорошо, примем за рабочую модель, до первого "прокола". Нет - и бог с ней, будем искать другую. Весь научный мир так работает.

          Но я нигде не видел, чтобы креационисты аналогичным образом поступали. Кроме оголтелой и совершенно безбашенной критики ТЭ от них ничего добиться невозможно. Ничего конструктивного, создающего или прогрессивного. Одним словом, антидарвинизм ради антидарвинизма. И только.

          Кстати, ссылку на ТЕОРИЮ креационизма Вы мне так и не дали. Где она?
          Ответить
          • xronik > feb7 | 30.08.2009 | 23:37 Ответить
            во-первых, принимать на веру некую гипотезу, имеющую более чем слабое экспериментальное или хотя бы теоретическое обоснование... ну... ненаучно.

            на мой взгляд, ценность этой гипотезы =0. она не дает ответов на вопросы и могла быть напечатана ТОЛЬКО благодаря авторитету автора. все, что в этой статье более-менее подтверждено - это то, что предок Г(-) бактерий был близок к актиномицетам и клостридиям + новый метод филогенетического анализа. это все.
            к сожалению, моделирующая публика не особо утруждает себя грязной лабораторной работой, предпочитая витать в эмпиреях чистой математики и выдвигать блестящие гипотезы. еще раз повторяю, от креационистов они отличаются только лексиконом (я ведь недаром заговорил об экспериментах). собственно, вы просто увидели слово "креационизм" и привычно среагировали.

            ссылку на теории креационизма я вам не дам - у меня её нет. я ведь эволюционист. но и потреблять всякий вздор под видом ТЭ я не буду.

            кстати, могу дать ссылку на работу, подтверждающую правоту креационистов. вот она: http://elementy.ru/news/431082. :-)
            Ответить
            • feb7 > xronik | 31.08.2009 | 00:13 Ответить
              Да уж, есть что вспомнить...столько копий сломано было)))) Только мне непонятно, почему Вы считаете, что эта статья продтверждает правоту креационистов? Мне представляется, что наоборот, она очень сильно пошатнула их позиции, ведь они утверждали, что таких механизмов, которые в этой статье описаны, нет. Оказалось - есть, просто их вот только нашли.

              А гипотеза, которая Вам так не нравится - это ведь всего лишь гипотеза. Мне недавно анекдот напомнили...про теоретиков.

              Зайцы пришли к Сове и жалуются:
              -Сова, нас в лесу все обижают, гоняют и едят. Ты мудрая птица, подскажи, что делать.
              Сова думала три дня а потом говорит им:
              -Это все потому, что вы беззащитны. Вам надо отрастить колючки, как у ежей или дикобразов, и вас обижать перестанут.
              Зайцы восхитились и пошли отращивать колючки. Три месяца прошло - никаких результатов. Приходят к Сове.
              -Сова, ничего не выходит. Подскажи нам, как отрастить колючки.
              Сова:
              -Откуда я знаю? Я не практик, я теоретик.

              Ну, а если серьезно, кто-то генерирует идеи, кто-то их опрвергает...практикой. Что Вы так испереживались из-за этой гипотезы? Ну подтвердится она или не подтвердиться - научных результатов будет предостаточно. Именно в результате выдвижения этой гипотезы эти эксперименты и станут планировать. А вот это, пожалуй, самый важный результат.
              Ответить
              • xronik > feb7 | 31.08.2009 | 01:28 Ответить
                просто креационист какой-то не такой... вялый... как ни крути, а синтез был получен в условиях, лишь имитирующих естественные. ведь этот опыт имел своих экспериментаторов, а значит был процессом искусственным. будь я на месте креосов, обязательно возопил бы: "смотрите, именно так и ЗАРОДИЛИ жизнь на земле".

                что до этой гипотезы... ну так их сотни тыщ, не худших, но лишь некоторые печатаются в таких журналах. а раз пропечатали, ну что ж, получайте теперь каменты от научной и околонаучной публики. а как они думали - сразу на постамент что ли? вот еще... сначала "до основанья", а уж затем - постамент. если что останется, конечно, достойное постамента.

                экспериментов наверное не будет, будет биоинформатика - анализ, то-се... теория бактериального симбиоза это тупиковый путь. перенос генов еще туда-сюда, но и тут сплошные вопросы без ответа. даже не вопросы, а отрицания.
                Ответить
                • feb7 > xronik | 31.08.2009 | 01:59 Ответить
                  Креационисты все ядреные, когда врываются на популянный сайт и начинают нести околесицу. Но когда им начинаюешь задавать уточняющие вопросы, почему-то бысто вянут.

                  Здесь на сайте уже такой вопрос ставили. А именно:" Некий экспериментатор ставит опыт и получает в пробирке жизнь. Что это, акт творения или доказательство абиогенного происхождения?"
                  А ответ был :"Химическим реакциям по барабану, где проходить, в реголите кометы, в полосе прибоя или в пробирке. Если для них создаются условия, они происходят"
                  Ответить
                • Combinator > xronik | 31.08.2009 | 12:14 Ответить
                  На счёт имитации естественых условий я бы всё же поспорил. Откуда, например, на ранней Земле у них в таких количествах появилась фосфорная кислота? Фосфор во Вселенной вообще, и в Солнечной системе в частности, элемент весьма редкий, его примерно на 3 порядка меньше, чем углерода и кислорода...
                  Ответить
                  • feb7 > Combinator | 31.08.2009 | 15:08 Ответить
                    Цитирую Википедию: "Фосфор - один из самых распространённых элементов земной коры, его содержание составляет 0,08-0,09 % её массы. В свободном состоянии не встречается из-за высокой химической активности. Образует около 190 минералов, важнейшими из которых являются апатит Ca5(PO4)3(F,Cl,OH) фосфорит Ca3(PO4)2 и другие."

                    В Мурманской области целый город Апатиты стоит на богатейшем месторождении.

                    Так что утверждать что фосфорной кислоте неодкуда было взяться, я бы не рискнул.
                    Ответить
                    • Combinator > feb7 | 31.08.2009 | 15:37 Ответить
                      Во первых, менее одной десятой процента по массе вовсе не впечатляет, тем более, что в отличии от того же углекислого газа и азота, фосфора в атмосфере, по видимому, никогда не было.
                      Во вторых (и это главное), ни один из указанных минералов не растворяется в воде, а что бы началось выделение фосфора из них в чистом виде нужны температуры свыше 1000 градусов, так что, происхождение фосфорной кислоты всё равно абсолютно неясно. Дело доходит до того, что некоторые исследователи предлогают рассматривать в качестве основного поставщика "правильного" фосфора для первичного бульона метеориты...
                      Ответить
                      • feb7 > Combinator | 31.08.2009 | 21:12 Ответить
                        Фосфорит Ca3(PO4)2 это кальциевая соль фосфорной кислоты. Зачем Вам меориты еще нужны?.

                        А теперь возмите массу земной коры и умножте ее на 0.001. Если Вас получившееся число тонн не впечатлит, то я уж и не знаю, что Вас впечатлить может.
                        Ответить
                        • Combinator > feb7 | 31.08.2009 | 21:40 Ответить
                          > Фосфорит Ca3(PO4)2 это кальциевая соль фосфорной кислоты. Зачем Вам
                          > меориты еще нужны?.

                          Но нам то нужна не соль, а именно фосфорная кислота. В результате какого процесса, по Вашему, из кальцевой соли в природе может получится фосфорная кислота? Я вообще то в химии не Копенгаген, но вот, например, здесь:
                          http://space.rin.ru/news.html?2056
                          утверждается, что с извлечением фосфора из минералов, присутствующих на Земле, дело обстоит весьма неважно.

                          > А теперь возмите массу земной коры и умножте ее на 0.001. Если Вас
                          > получившееся число тонн не впечатлит, то я уж и не знаю, что Вас
                          > впечатлить может.

                          Абсолютно не впечатляет, ибо, по моему скромному мнению, важно не абсолютное количество фосфора в земной коре, а взаимная концентрация реагентов в реакции.
                          Ответить
                          • feb7 > Combinator | 01.09.2009 | 05:26 Ответить
                            Вы уж меня простите великодушно, но у меня сложилось впечатление что ту статью, на которую Вы ссылаетесь, писал человек, почерпнувший знания из женского отрывного календарика (как часто делает моя мамуля).

                            Меня насторожило то, что он уверен, что "Начиналось все с образования в солнечной системе планетезималей - строительных блоков для планет размером около 500 км в поперечнике. Ядра у них были металлические, а мантия состояла из силикатов. Железные метеориты - это осколки металлических ядер планетезималей, которые образовывались при столкновении планетезималей друг с другом".

                            Понимаете, размеров в 500 километров не хватает для небесного тела, чтобы началась дифференциация вещества на металлическое ядро и силикатную кору. Следовательно, доверия к Вашему источнику нет.

                            Что касается фосфатов и прочей химии. Химию я забыл, как водится, на следующий день после экзамена, однако даже я представляю себе, что сама по себе фосфорная кислота в биохимических реакциях не участвует. Например, в реакции фосфориллирования белков принимает участие остаток фосфорной кислоты, а не сама кислота.
                            Ответить
                            • Combinator > feb7 | 01.09.2009 | 12:51 Ответить
                              Ну, по поводу "ядер и мантии" планетезималей это, очевидно, отсебятина журналиста. Что, однако, не отменяет саму проблему. Вот Вам, например, ссылка на более серьёзный источник, где подобных глупостей нет:
                              http://www.physorg.com/news10371.html

                              При чём тут фосфориллирование белков я, честно говоря, вообше не понял. Вроде бы, речь в обсуждаемой статье об абиогенном синтезе РНК, разве нет? И использовалась при этом именно фосфорная кислота. Вообще, как Вы себе представляете существование в природе в свободном виде остатка фосфорной кислоты?
                              Ответить
                              • feb7 > Combinator | 01.09.2009 | 13:20 Ответить
                                Вообще-то в обсуждаемой статье речь идет о гипотетическом слянии двух организмов: актинобактерий и клостридий.

                                Если Вам охота затеять "химический" спор, обращайтесь к более компетентным людям. Однако даже я знаю, что фосфорная кислота облазуется их фосфатов в присутствии других кислот, например, серной. Серная же кислота легко образуется в природе при взаимодействии серного ангидрида с водой. Про кислотные дожди слыхали?
                                Ответить
                                • Combinator > feb7 | 01.09.2009 | 13:57 Ответить
                                  Вообще то кислотные дожди считаются признаком именно индустриальной эпохи развития цивилизации. В естественных природных водоёмах на сегодняшний день концентрация серной кислоты, на сколько я знаю, не превышает уровня 0.1%.

                                  Короче, предлогаю дискуссию свернуть, ибо она постепенно вырождается в флейм.
                                  Ответить
                                  • feb7 > Combinator | 02.09.2009 | 00:23 Ответить
                                    Соединения серы присутствуют в выбросах вулканов.

                                    Я согласен прекратить дискуссию, тем более оба явно не химики. Лучше уж поспорить о балете - там, по крайней мере, иметь мнение, идущее вразрез со здравым смыслом не обзовут диагнозом:-))))
                                    Ответить
  • e-note  | 31.08.2009 | 14:04 Ответить
    Спасибо за интересную статью. Охотно представляются примитивные "актиномицетно-клостридиальные лишайники", доведшие симбиоз до полного слияния.
    Ответить
    • xronik > e-note | 31.08.2009 | 21:02 Ответить
      научная мифология
      Ответить
  • Ka  | 31.08.2009 | 23:07 Ответить
    Откровенно говоря, я не понимаю, как такие статьи вообще могут печататься в журналах типа Nature. Идея любопытная, но доказательств для нее не представлено никаких. Одна из десятков непроверенных гипотез, которая привлекла такое внимание исключительно из-за места публикации. ИМХО, весьма специфические идеи Cavalier-Smith'a и то обоснованы на пару порядков лучше.
    Ответить
  • glagol  | 06.09.2009 | 11:46 Ответить
    В цитированной статье из Nature про эндосимбиоз у бактерий-эндосимбионтов насекомых речь идет не о тлях, а о мучнистых червецах (Pseudococcidae). Что касается содержания этой статьи (про симбионтов червецов), то оно сомнительное. Мне удалось найти в продолжение этой темы только одну статью (что само по себе удивительно, если учесть уникальность и масштаб открытия). Эта статья 2008 г (Appl Environ Microbiol. 2008 July; 74(13): 4175-4184) выполнена другими авторами, но точно теми же методами. И в обоих статьях, оценивая численность бактерий, авторы показали, что число копий гена groEL бета-бактерий и их гамма-"эндосимбонтов" в расчете на клетку хозяина примерно одинаково (во второй работе число копий гена бета-бактерий даже немного меньше). При этом, судя по окрашиванию и электронной микроскопии, внутри одной бета-бактерии должно находиться больше десятка гамма-бактерий, если загадочные трехмембранные сферы - это действительно бета-бактерии. Насколько я смог понять из других статей, groEL (ген белка теплового шока) у большинства бактерий - хромосомный ген, присутствующий в количестве одной копии (редко - двух копий) на бактериальный геном. Удивительно, что ни в одной, ни в другой статье авторы никак не объясняют и даже не обсуждают сей странный результат!
    Хорошо бы кто-нибудь из специалистов в этих статьях разобрался; ведь вопрос о возможности истинного эндосимбиоза среди прокариот - вопрос принципиальный для понимания эволюции!
    Ответить
  • myugor  | 07.09.2009 | 07:54 Ответить
    Если это симбиоз - то очень странный: получается, что от хозяина остались только белковые семейства и сильно измененная наружная мембрана. Все остальное в клетках дидермат - от гостя, в том числе жгутик. Почему сохранился жгутик гостя, а не хозяина? Почему сохранился муреиновый слой гостя, но не хозяина? Лейк полагает, что произошла миграция и того, и другого с наружной мембраны к внутренней - но это ничего не проясняет.
    Лейк априори рассматривает дидермат как монофилетическую группу, но по сложившемуся сейчас мнению, она скорее парафилетична. Что бы он получил, если бы разделил в анализе дидермат на эобактерий (Chloroflexi+Cyanobacteria+Deinococcus/Thermus) и грациликут?
    Согласен со скептиками.
    Ответить
Написать комментарий


Элементы

© 2005–2024 «Элементы»