Skip to main content

Advertisement

Log in

Emerging trends in nutraceutical applications of whey protein and its derivatives

  • Review Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The looming food insecurity demands the utilization of nutrient-rich residues from food industries as value-added products. Whey, a dairy industry waste has been characterized to be excellent nourishment with an array of bioactive components. Whey protein comprises 20 % of total milk protein and it is rich in branched and essential amino acids, functional peptides, antioxidants and immunoglobulins. It confers benefits against a wide range of metabolic diseases such as cardiovascular complications, hypertension, obesity, diabetes, cancer and phenylketonuria. The protein has been validated to boost recovery from resistance exercise-injuries, stimulate gut physiology and protect skin against detrimental radiations. Apart from health invigoration, whey protein has proved its suitability as fat replacer and emulsifier. Further, its edible and antimicrobial packaging potential renders its highly desirable in food as well as pharmaceutical sectors. Considering the enormous nutraceutical worth of whey protein, this review emphasizes on its established and emerging biological roles. Present and future scopes in food processing and dietary supplement formulation are discussed. Associated hurdles are identified and how technical advancement might augment its applications are explored. This review is expected to provide valuable insight on whey protein-fortified functional foods, associated technical hurdles and scopes of improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Salam AM, Effat LK (2010) Preparation and evaluation of a novel therapeutic dairy-based drink for phenylketonuria. N Am J Med Sci 2:66–70. doi:10.4297/najms.2010.266

    Google Scholar 

  • Abrahão V (2012) Nourishing the dysfunctional gut and whey protein. Curr Opin Clin Nutr Metab Care 15:480–484. doi:10.1097/MCO.0b013e328356b71e

    Article  CAS  Google Scholar 

  • Adegboye AR, Boucher BJ, Kongstad J, et al (2015) Calcium, vitamin D, casein and whey protein intakes and periodontitis among Danish adults. Public Health Nutr:1–8. doi:10.1017/S1368980015001202

  • Ahn WS, Park SJ, Lee SY (2000) Production of Poly(3-hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solution. Appl Environ Microbiol 66:3624–3627

    Article  CAS  Google Scholar 

  • Akalın AS, Unal G, Dinkci N, Hayaloglu AA (2012) Microstructural, textural, and sensory characteristics of probiotic yogurts fortified with sodium calcium caseinate or whey protein concentrate. J Dairy Sci 95:3617–3628. doi:10.3168/jds.2011-5297

    Article  CAS  Google Scholar 

  • Akhavan T, Luhovyy BL, Panahi S, et al (2014) Mechanism of action of pre-meal consumption of whey protein on glycemic control in young adults. J Nutr Biochem 25:36–43. doi:10.1016/j.jnutbio.2013.08.012

    Article  CAS  Google Scholar 

  • Alexander DD, Schmitt DF, Tran NL, et al (2010) Partially hydrolyzed 100 % whey protein infant formula and atopic dermatitis risk reduction: a systematic review of the literature. Nutr Rev 68:232–245. doi:10.1111/j.1753-4887.2010.00281.x

    Article  Google Scholar 

  • Ameratunga R, Woon S-T (2010) Anaphylaxis to hyperallergenic functional foods. Allergy Asthma Clin Immunol 6:33. doi:10.1186/1710-1492-6-33

    Article  CAS  Google Scholar 

  • Athira S, Mann B, Sharma R, Kumar R (2013) Ameliorative potential of whey protein hydrolysate against paracetamol-induced oxidative stress. J Dairy Sci 96:1431–1437. doi:10.3168/jds.2012-6080

    Article  CAS  Google Scholar 

  • Attaallah W, Yilmaz AM, Erdoğan N, et al (2012) Whey protein versus whey protein hydrolyzate for the protection of azoxymethane and dextran sodium sulfate induced colonic tumors in rats. Pathol Oncol Res 18:817–822. doi:10.1007/s12253-012-9509-9

    Article  CAS  Google Scholar 

  • Badr G, Badr BM, Mahmoud MH, et al (2012a) Treatment of diabetic mice with undenatured whey protein accelerates the wound healing process by enhancing the expression of MIP-1α, MIP-2, KC, CX3CL1 and TGF-β in wounded tissue. BMC Immunol 13:32. doi:10.1186/1471-2172-13-32

    Article  CAS  Google Scholar 

  • Badr G, Ebaid H, Mohany M, Abuelsaad AS (2012b) Modulation of immune cell proliferation and chemotaxis towards CC chemokine ligand (CCL)-21 and CXC chemokine ligand (CXCL)-12 in undenatured whey protein-treated mice. J Nutr Biochem 23:1640–1646. doi:10.1016/j.jnutbio.2011.11.006

    Article  CAS  Google Scholar 

  • Baiano A (2014) Recovery of biomolecules from food wastes - a review. Molecules 19:14821–14842. doi:10.3390/molecules190914821

    Article  CAS  Google Scholar 

  • Ballard KD, Kupchak BR, Volk BM, et al (2013) Acute effects of ingestion of a novel whey-derived extract on vascular endothelial function in overweight, middle-aged men and women. Br J Nutr 109:882–893. doi:10.1017/S0007114512002061

    Article  CAS  Google Scholar 

  • Barth CA, Behnke U (1997) Nutritional physiology of whey and whey components. Nahrung 41:2–12

    Article  CAS  Google Scholar 

  • Bell SJ (2000) Whey protein concentrates with and without immunoglobulins: a review. J Med Food 3:1–13. doi:10.1089/jmf.2000.3.1

    Article  CAS  Google Scholar 

  • Ben Rebah F, Miled N (2012) Fish processing wastes for microbial enzyme production: a review. 3. Biotech 3:255–265. doi:10.1007/s13205-012-0099-8

    Google Scholar 

  • Bertenshaw EJ, Lluch A, Yeomans MR (2008) Satiating effects of protein but not carbohydrate consumed in a between-meal beverage context. Physiol Behav 93:427–436. doi:10.1016/j.physbeh.2007.09.014

    Article  CAS  Google Scholar 

  • Bhushan S, Kalia K, Sharma M, et al (2008) Processing of apple pomace for bioactive molecules. Crit Rev Biotechnol 28:285–296. doi:10.1080/07388550802368895

    Article  CAS  Google Scholar 

  • Bonnaillie LM, Tomasula PM (2012) Fractionation of whey protein isolate with supercritical carbon dioxide to produce enriched α-lactalbumin and β-lactoglobulin food ingredients. J Agric Food Chem 60:5257–5266. doi:10.1021/jf3011036

    Article  CAS  Google Scholar 

  • Botteman M, Detzel P (2015) Cost-effectiveness of partially hydrolyzed whey protein formula in the primary prevention of atopic dermatitis in high-risk urban infants in southeast Asia. Ann Nutr Metab 66(Suppl 1):26–32. doi:10.1159/000370222

    Article  CAS  Google Scholar 

  • Bu G, Luo Y, Zheng Z, Zheng H (2009) Effect of heat treatment on the antigenicity of bovine α-lactalbumin and β-lactoglobulin in whey protein isolate. Food Agric Immunol 20:195–206. doi:10.1080/09540100903026116

    Article  CAS  Google Scholar 

  • Casqueiro J, Casqueiro J, Alves C (2012) Infections in patients with diabetes mellitus: a review of pathogenesis. Indian J Endocrinol Metab 16(Suppl 1):S27–S36. doi:10.4103/2230-8210.94253

    Google Scholar 

  • Castro GA, Maria DA, Bouhallab S, Sgarbieri VC (2009) In vitro impact of a whey protein isolate (WPI) and collagen hydrolysates (CHs) on B16F10 melanoma cells proliferation. J Dermatol Sci 56:51–57. doi:10.1016/j.jdermsci.2009.06.016

    Article  CAS  Google Scholar 

  • Chen W-C, Huang W-C, Chiu C-C, et al (2014) Whey protein improves exercise performance and biochemical profiles in trained mice. Med Sci Sports Exerc 46:1517–1524. doi:10.1249/MSS.0000000000000272

    Article  CAS  Google Scholar 

  • Chou CJ, Affolter M, Kussmann M (2012) A nutrigenomics view of protein intake: macronutrient, bioactive peptides, and protein turnover. Prog Mol Biol Transl Sci 108:51–74. doi:10.1016/B978-0-12-398397-8.00003-4

    Article  CAS  Google Scholar 

  • Churchward-Venne TA, Breen L, Di Donato DM, et al (2014) Leucine supplementation of a low-protein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: a double-blind, randomized trial. Am J Clin Nutr 99:276–286. doi:10.3945/ajcn.113.068775

    Article  CAS  Google Scholar 

  • Cinelli P, Schmid M, Bugnicourt E, et al (2014) Whey protein layer applied on biodegradable packaging film to improve barrier properties while maintaining biodegradability. Polym Degrad Stab 108:151–157. doi:10.1016/j.polymdegradstab.2014.07.007

    Article  CAS  Google Scholar 

  • Croissant AE, Kang EJ, Campbell RE, et al (2009) The effect of bleaching agent on the flavor of liquid whey and whey protein concentrate. J Dairy Sci 92:5917–5927. doi:10.3168/jds.2009-2535

    Article  CAS  Google Scholar 

  • De Moura CS, Lollo PCB, Morato PN, et al (2013) Whey protein hydrolysate enhances the exercise-induced heat shock protein (HSP70) response in rats. Food Chem 136:1350–1357. doi:10.1016/j.foodchem.2012.09.070

    Article  CAS  Google Scholar 

  • Demirdas S, Coakley KE, Bisschop PH, et al (2015) Bone health in phenylketonuria: a systematic review and meta-analysis. Orphanet J Rare Dis 10:17. doi:10.1186/s13023-015-0232-y

    Article  Google Scholar 

  • Dillon EL, Basra G, Horstman AM, et al (2012) Cancer cachexia and anabolic interventions: a case report. J Cachex Sarcopenia Muscle 3:253–263. doi:10.1007/s13539-012-0066-6

    Article  Google Scholar 

  • Duan C, Yang L, Li A, et al (2014) Effects of enzymatic hydrolysis on the allergenicity of whey protein concentrates. Iran J Allergy Asthma Immunol 13:231–239

    Google Scholar 

  • Duongthingoc D, George P, Katopo L, et al (2013) Effect of whey protein agglomeration on spray dried microcapsules containing Saccharomyces boulardii. Food Chem 141:1782–1788. doi:10.1016/j.foodchem.2013.04.093

    Article  CAS  Google Scholar 

  • Elattar G, Saleh Z, El-Shebini S, et al (2010) The use of whey protein concentrate in management of chronic hepatitis C virus - a pilot study. Arch Med Sci 6:748–755. doi:10.5114/aoms.2010.17091

    Article  CAS  Google Scholar 

  • Eliseeva IE (2001) [Angiotensin-converting enzyme and its physiological role]. Vopr medit͡sinskoĭ khimii 47:43–54

  • Essick EE, Sam F (2010) Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer. Oxidative Med Cell Longev 3:168–177. doi:10.4161/oxim.3.3.12106

    Article  Google Scholar 

  • Estévez N, Fuciños P, Sobrosa AC, et al (2012) Modeling the angiotensin-converting enzyme inhibitory activity of peptide mixtures obtained from cheese whey hydrolysates using concentration-response curves. Biotechnol Prog 28:1197–1206. doi:10.1002/btpr.1587

    Article  CAS  Google Scholar 

  • Fernández-Pan I, Royo M, Ignacio Maté J (2012) Antimicrobial activity of whey protein isolate edible films with essential oils against food spoilers and foodborne pathogens. J Food Sci 77:M383–M390. doi:10.1111/j.1750-3841.2012.02752.x

    Article  CAS  Google Scholar 

  • Freidenreich DJ, Volek JS (2012) Immune responses to resistance exercise. Exerc Immunol Rev 18:8–41

    Google Scholar 

  • Freudenberg A, Petzke KJ, Klaus S (2013) Dietary L-leucine and L-alanine supplementation have similar acute effects in the prevention of high-fat diet-induced obesity. Amino Acids 44:519–528. doi:10.1007/s00726-012-1363-2

    Article  CAS  Google Scholar 

  • Gad AS, Khadrawy YA, El-Nekeety AA, et al (2011) Antioxidant activity and hepatoprotective effects of whey protein and spirulina in rats. Nutrition 27:582–589. doi:10.1016/j.nut.2010.04.002

    Article  CAS  Google Scholar 

  • Gerez CL, Font de Valdez G, Gigante ML, Grosso CRF (2012) Whey protein coating bead improves the survival of the probiotic Lactobacillus rhamnosus CRL 1505 to low pH. Lett Appl Microbiol 54:552–556. doi:10.1111/j.1472-765X.2012.03247.x

    Article  CAS  Google Scholar 

  • Gomes SP, Nyengaard JR, Misawa R, et al (2009) Atrophy and neuron loss: effects of a protein-deficient diet on sympathetic neurons. J Neurosci Res 87:3568–3575. doi:10.1002/jnr.22167

    Article  CAS  Google Scholar 

  • Gülseren I, Fang Y, Corredig M (2012) Complexation of high methoxyl pectin with ethanol desolvated whey protein nanoparticles: physico-chemical properties and encapsulation behaviour. Food Funct 3:859–866. doi:10.1039/c2fo10235h

    Article  CAS  Google Scholar 

  • Hébrard G, Hoffart V, Beyssac E, et al (2010) Coated whey protein/alginate microparticles as oral controlled delivery systems for probiotic yeast. J Microencapsul 27:292–302. doi:10.3109/02652040903134529

    Article  CAS  Google Scholar 

  • Hochwallner H, Schulmeister U, Swoboda I, et al (2014) Cow’s milk allergy: from allergens to new forms of diagnosis, therapy and prevention. Methods 66:22–33. doi:10.1016/j.ymeth.2013.08.005

    Article  CAS  Google Scholar 

  • Hu M, McClements DJ, Decker EA (2003) Impact of whey protein emulsifiers on the oxidative stability of salmon oil-in-water emulsions. J Agric Food Chem 51:1435–1439. doi:10.1021/jf0203794

    Article  CAS  Google Scholar 

  • Hulmi JJ, Lockwood CM, Stout JR (2010) Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: a case for whey protein. Nutr Metab (Lond) 7:51. doi:10.1186/1743-7075-7-51

    Article  CAS  Google Scholar 

  • Jain SK (2012) L-cysteine supplementation as an adjuvant therapy for type-2 diabetes. Can J Physiol Pharmacol 90:1061–1064. doi:10.1139/y2012-087

    Article  CAS  Google Scholar 

  • Jakubowicz D, Froy O (2013) Biochemical and metabolic mechanisms by which dietary whey protein may combat obesity and type 2 diabetes. J Nutr Biochem 24:1–5. doi:10.1016/j.jnutbio.2012.07.008

    Article  CAS  Google Scholar 

  • Janjarasskul T, Tananuwong K, Krochta JM (2011) Whey protein film with oxygen scavenging function by incorporation of ascorbic acid. J Food Sci 76:E561–E568. doi:10.1111/j.1750-3841.2011.02409.x

    Article  CAS  Google Scholar 

  • Katayama M, Wilson LA (2008) Utilization of okara, a byproduct from soymilk production, through the development of soy-based snack food. J Food Sci 73:S152–S157. doi:10.1111/j.1750-3841.2008.00662.x

    Article  CAS  Google Scholar 

  • Kattan JD, Cocco RR, Järvinen KM (2011) Milk and soy allergy. Pediatr Clin N Am 58:407–426. doi:10.1016/j.pcl.2011.02.005

    Article  Google Scholar 

  • Kerasioti E, Stagos D, Priftis A, et al (2014) Antioxidant effects of whey protein on muscle C2C12 cells. Food Chem 155:271–278. doi:10.1016/j.foodchem.2014.01.066

    Article  CAS  Google Scholar 

  • Kim J, Paik H-D, Yoon Y-C, Park E (2013) Whey protein inhibits iron overload-induced oxidative stress in rats. J Nutr Sci Vitaminol (Tokyo) 59:198–205

    Article  CAS  Google Scholar 

  • Kimura Y, Sumiyoshi M, Kobayashi T (2014) Whey peptides prevent chronic ultraviolet B radiation-induced skin aging in melanin-possessing male hairless mice. J Nutr 144:27–32. doi:10.3945/jn.113.180406

    Article  CAS  Google Scholar 

  • Kishta OA, Iskandar M, Dauletbaev N, et al (2013) Pressurized whey protein can limit bacterial burden and protein oxidation in Pseudomonas aeruginosa lung infection. Nutrition 29:918–924. doi:10.1016/j.nut.2012.11.009

    Article  CAS  Google Scholar 

  • Knöbel Y, Weise A, Glei M, et al (2007) Ferric iron is genotoxic in non-transformed and preneoplastic human colon cells. Food Chem Toxicol 45:804–811. doi:10.1016/j.fct.2006.10.028

    Article  CAS  Google Scholar 

  • Kong B, Peng X, Xiong YL, Zhao X (2012) Protection of lung fibroblast MRC-5 cells against hydrogen peroxide-induced oxidative damage by 0.1–2.8 kDa antioxidative peptides isolated from whey protein hydrolysate. Food Chem 135:540–547. doi:10.1016/j.foodchem.2012.04.122

    Article  CAS  Google Scholar 

  • Krzeminski A, Prell KA, Busch-Stockfisch M, et al (2014) Whey protein–pectin complexes as new texturising elements in fat-reduced yoghurt systems. Int Dairy J 36:118–127. doi:10.1016/j.idairyj.2014.01.018

    Article  CAS  Google Scholar 

  • Kuhn KR, Cunha RL (2012) Flaxseed oil – whey protein isolate emulsions: effect of high pressure homogenization. J Food Eng 111:449–457. doi:10.1016/j.jfoodeng.2012.01.016

    Article  CAS  Google Scholar 

  • Lands LC, Iskandar M, Beaudoin N, et al (2010) Dietary supplementation with pressurized whey in patients with cystic fibrosis. J Med Food 13:77–82. doi:10.1089/jmf.2008.0326

    Article  CAS  Google Scholar 

  • Leksrisompong P, Gerard P, Lopetcharat K, Drake M (2012) Bitter taste inhibiting agents for whey protein hydrolysate and whey protein hydrolysate beverages. J Food Sci 77:S282–S287. doi:10.1111/j.1750-3841.2012.02800.x

    Article  CAS  Google Scholar 

  • Li M, Ma Y, Cui J (2014) Whey-protein-stabilized nanoemulsions as a potential delivery system for water-insoluble curcumin. LWT Food Sci Technol 59:49–58. doi:10.1016/j.lwt.2014.04.054

    Article  CAS  Google Scholar 

  • Liaw IW, Eshpari H, Tong PS, Drake MA (2010) The impact of antioxidant addition on flavor of cheddar and mozzarella whey and cheddar whey protein concentrate. J Food Sci 75:C559–C569. doi:10.1111/j.1750-3841.2010.01695.x

    Article  CAS  Google Scholar 

  • Liu J, Wang X, Zhao Z (2014a) Effect of whey protein hydrolysates with different molecular weight on fatigue induced by swimming exercise in mice. J Sci Food Agric 94:126–130. doi:10.1002/jsfa.6220

    Article  CAS  Google Scholar 

  • Liu X, Jiang D, Peterson DG (2014b) Identification of bitter peptides in whey protein hydrolysate. J Agric Food Chem 62:5719–5725. doi:10.1021/jf4019728

    Article  CAS  Google Scholar 

  • Loesche WJ, Grossman NS (2001) Periodontal disease as a specific, albeit chronic, infection: diagnosis and treatment. Clin Microbiol Rev 14:727–752. doi:10.1128/CMR.14.4.727-752.2001. table of contents

    Article  CAS  Google Scholar 

  • Lollo PCB, Amaya-Farfan J, Faria IC, et al (2014) Hydrolysed whey protein reduces muscle damage markers in brazilian elite soccer players compared with whey protein and maltodextrin. A twelve-week in-championship intervention. Int Dairy J 34:19–24. doi:10.1016/j.idairyj.2013.07.001

    Article  CAS  Google Scholar 

  • Lowe NJ, Meyers DP, Wieder JM, et al (1995) Low doses of repetitive ultraviolet a induce morphologic changes in human skin. J Investig Dermatol 105:739–743

    Article  CAS  Google Scholar 

  • Lyczak JB, Cannon CL, Pier GB (2002) Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15:194–222

    Article  CAS  Google Scholar 

  • Malik P (2007) Value-added nutrition. Can J Cardiol 23:956

    Article  Google Scholar 

  • Martin AH, de Jong GAH (2012) Enhancing the in vitro Fe(2+) bio-accessibility using ascorbate and cold-set whey protein gel particles. Dairy Sci Technol 92:133–149. doi:10.1007/s13594-011-0055-0

    Article  CAS  Google Scholar 

  • Martin V, Ratel S, Siracusa J, et al (2013) Whey proteins are more efficient than casein in the recovery of muscle functional properties following a casting induced muscle atrophy. PLoS One 8:e75408. doi:10.1371/journal.pone.0075408

    Article  CAS  Google Scholar 

  • Mehyar GF, Al-Isamil KM, Al-Ghizzawi HM, Holley RA (2014) Stability of cardamom (Elettaria Cardamomum) essential oil in microcapsules made of whey protein isolate, guar gum, and carrageenan. J Food Sci. doi:10.1111/1750-3841.12652

    Google Scholar 

  • Mehyar GF, Al-Ismail K, Han JH, Chee GW (2012) Characterization of edible coatings consisting of pea starch, whey protein isolate, and Carnauba wax and their effects on oil rancidity and sensory properties of walnuts and pine nuts. J Food Sci 77:E52–E59. doi:10.1111/j.1750-3841.2011.02559.x

    Article  CAS  Google Scholar 

  • Morato PN, Lollo PC, Moura CS, Batista TM, Carneiro EM, Amaya-Farfan J (2013) A dipeptide and an amino acid; present in whey protein hydrolysate increase translocation of GLUT-4 to the plasma membrane in Wistar rats. Food Chem 139:853–859. doi:10.1016/j.foodchem.2012.12.062

  • Mortensen LS, Holmer-Jensen J, Hartvigsen ML, et al (2012) Effects of different fractions of whey protein on postprandial lipid and hormone responses in type 2 diabetes. Eur J Clin Nutr 66:799–805. doi:10.1038/ejcn.2012.48

    Article  CAS  Google Scholar 

  • Morton JP, Kayani AC, McArdle A, Drust B (2009) The exercise-induced stress response of skeletal muscle, with specific emphasis on humans. Sports Med 39:643–662. doi:10.2165/00007256-200939080-00003

    Article  Google Scholar 

  • Moura CS, Lollo PCB, Morato PN, et al (2014) Whey protein hydrolysate enhances HSP90 but does not alter HSP60 and HSP25 in skeletal muscle of rats. PLoS One 9:e83437. doi:10.1371/journal.pone.0083437

    Article  CAS  Google Scholar 

  • Nadeem M, Salim-ur-Rehman, Muhammad Anjum F, et al (2012) Development, characterization, and optimization of protein level in date bars using response surface methodology. ScientificWorldJournal 2012:518702. doi:10.1100/2012/518702

  • Neelima SR, Rajput YS, Mann B (2013) Chemical and functional properties of glycomacropeptide (GMP) and its role in the detection of cheese whey adulteration in milk: a review. Dairy Sci Technol 93:21–43. doi:10.1007/s13594-012-0095-0

    Article  CAS  Google Scholar 

  • Ney DM, Blank RD, Hansen KE (2014) Advances in the nutritional and pharmacological management of phenylketonuria. Curr Opin Clin Nutr Metab Care 17:61–68. doi:10.1097/MCO.0000000000000002

    CAS  Google Scholar 

  • Park CW, Bastian E, Farkas B, Drake M (2014) The effect of acidification of liquid whey protein concentrate on the flavor of spray-dried powder. J Dairy Sci 97:4043–4051. doi:10.3168/jds.2013-7877

    Article  CAS  Google Scholar 

  • Park E, Glei M, Knöbel Y, Pool-Zobel BL (2007) Blood mononucleocytes are sensitive to the DNA damaging effects of iron overload–in vitro and ex vivo results with human and rat cells. Mutat Res 619:59–67. doi:10.1016/j.mrfmmm.2007.01.012

    Article  CAS  Google Scholar 

  • Pavlovich-Abril A, Rouzaud-Sández O, Torres P, Robles-Sánchez RM (2012) Cereal bran and wholegrain as a source of dietary fibre: technological and health aspects. Int J Food Sci Nutr 63:882–892. doi:10.3109/09637486.2012.676030

    Article  CAS  Google Scholar 

  • Pérez-Cano FJ, Marín-Gallén S, Castell M, et al (2007) Bovine whey protein concentrate supplementation modulates maturation of immune system in suckling rats. Br J Nutr 98(Suppl 1):S80–S84. doi:10.1017/S0007114507838074

    Google Scholar 

  • Pérez-Masiá R, López-Nicolás R, Periago MJ, et al (2015) Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chem 168:124–133. doi:10.1016/j.foodchem.2014.07.051

    Article  CAS  Google Scholar 

  • Piccolomini AF, Iskandar MM, Lands LC, Kubow S (2012) High hydrostatic pressure pre-treatment of whey proteins enhances whey protein hydrolysate inhibition of oxidative stress and IL-8 secretion in intestinal epithelial cells. Food Nutr Res. doi:10.3402/fnr.v56i0.17549

    Google Scholar 

  • Prussick R, Prussick L, Gutman J (2013) Psoriasis improvement in patients using glutathione-enhancing, nondenatured whey protein isolate: a pilot study. J Clin Aesthet Dermatol 6:23–26

    Google Scholar 

  • Ross EK, Gray JJ, Winter AN, Linseman DA (2012) Immunocal® and preservation of glutathione as a novel neuroprotective strategy for degenerative disorders of the nervous system. Recent Pat CNS Drug Discov 7:230–235

    Article  CAS  Google Scholar 

  • Salehi A, Gunnerud U, Muhammed SJ, et al (2012) The insulinogenic effect of whey protein is partially mediated by a direct effect of amino acids and GIP on β-cells. Nutr Metab (Lond) 9:48. doi:10.1186/1743-7075-9-48

    Article  CAS  Google Scholar 

  • Sheikholeslami Vatani D, Ahmadi Kani Golzar F (2012) Changes in antioxidant status and cardiovascular risk factors of overweight young men after six weeks supplementation of whey protein isolate and resistance training. Appetite 59:673–678. doi:10.1016/j.appet.2012.08.005

    Article  CAS  Google Scholar 

  • Sindayikengera S, Xia W (2006) Nutritional evaluation of caseins and whey proteins and their hydrolysates from protamex. J Zhejiang Univ Sci B 7:90–98. doi:10.1631/jzus.2006.B0090

    Article  CAS  Google Scholar 

  • Smithers GW, Ballard FJ, Copeland AD, et al (1996) New opportunities from the isolation and utilization of whey proteins. J Dairy Sci 79:1454–1459

    Article  CAS  Google Scholar 

  • Solinas C, Corpino M, Maccioni R, Pelosi U (2010) Cow’s milk protein allergy. J Matern Fetal Neonatal Med 23(Suppl 3):76–79. doi:10.3109/14767058.2010.512103

    Article  CAS  Google Scholar 

  • Solverson P, Murali SG, Brinkman AS, et al (2012) Glycomacropeptide, a low-phenylalanine protein isolated from cheese whey, supports growth and attenuates metabolic stress in the murine model of phenylketonuria. Am J Physiol Endocrinol Metab 302:E885–E895. doi:10.1152/ajpendo.00647.2011

    Article  CAS  Google Scholar 

  • Sousa GTD, Lira FS, Rosa JC, et al (2012) Dietary whey protein lessens several risk factors for metabolic diseases: a review. Lipids Health Dis 11:67. doi:10.1186/1476-511X-11-67

    Article  CAS  Google Scholar 

  • Strisciuglio P, Concolino D (2014) New strategies for the treatment of phenylketonuria (PKU). Metabolites 4:1007–1017. doi:10.3390/metabo4041007

    Article  CAS  Google Scholar 

  • Tahavorgar A, Vafa M, Shidfar F, et al (2014) Whey protein preloads are more beneficial than soy protein preloads in regulating appetite, calorie intake, anthropometry, and body composition of overweight and obese men. Nutr Res. doi:10.1016/j.nutres.2014.08.015

    Google Scholar 

  • Takata T, Tanaka F, Yamada T, et al (2001) Clinical significance of caspase-3 expression in pathologic-stage I, nonsmall-cell lung cancer. Int J Cancer 96(Suppl):54–60. doi:10.1002/ijc.10347

    Article  CAS  Google Scholar 

  • Takayanagi T, Sasaki H, Kawashima A, et al (2011) A new enteral diet, MHN-02, which contains abundant antioxidants and whey peptide, protects against carbon tetrachloride-induced hepatitis. JPEN J Parenter Enteral Nutr 35:516–522. doi:10.1177/0148607110381599

    Article  CAS  Google Scholar 

  • Tippetts M, Martini S, Brothersen C, McMahon DJ (2012) Fortification of cheese with vitamin D3 using dairy protein emulsions as delivery systems. J Dairy Sci 95:4768–4774. doi:10.3168/jds.2011-5134

    Article  CAS  Google Scholar 

  • Toedebusch RG, Childs TE, Hamilton SR, et al (2012) Postprandial leucine and insulin responses and toxicological effects of a novel whey protein hydrolysate-based supplement in rats. J Int Soc Sports Nutr 9:24. doi:10.1186/1550-2783-9-24

    Article  CAS  Google Scholar 

  • Tong X, Li W, Xu J-Y, et al (2014) Effects of whey protein and leucine supplementation on insulin resistance in non-obese insulin-resistant model rats. Nutrition 30:1076–1080. doi:10.1016/j.nut.2014.01.013

    Article  CAS  Google Scholar 

  • Trachootham D, Lu W, Ogasawara MA, et al (2008) Redox regulation of cell survival. Antioxid Redox Signal 10:1343–1374. doi:10.1089/ars.2007.1957

    Article  CAS  Google Scholar 

  • Van Calcar SC, Ney DM (2012) Food products made with glycomacropeptide, a low-phenylalanine whey protein, provide a new alternative to amino acid-based medical foods for nutrition management of phenylketonuria. J Acad Nutr Diet 112:1201–1210. doi:10.1016/j.jand.2012.05.004

    Article  CAS  Google Scholar 

  • Volek JS, Volk BM, Gómez AL, et al (2013) Whey protein supplementation during resistance training augments lean body mass. J Am Coll Nutr 32:122–135. doi:10.1080/07315724.2013.793580

    Article  CAS  Google Scholar 

  • Walsh H, Cheng J, Guo M (2014) Effects of carbonation on probiotic survivability, physicochemical, and sensory properties of milk-based symbiotic beverages. J Food Sci 79:M604–M613. doi:10.1111/1750-3841.12381

    Article  CAS  Google Scholar 

  • Williams RA, Mamotte CDS, Burnett JR (2008) Phenylketonuria: an inborn error of phenylalanine metabolism. Clin Biochem Rev 29:31–41

    Google Scholar 

  • Xu R (2009) Effect of whey protein on the proliferation and differentiation of osteoblasts. J Dairy Sci 92:3014–3018. doi:10.3168/jds.2008-1702

    Article  CAS  Google Scholar 

  • Yadav DN, Balasubramanian S, Kaur J, et al (2014) Non-wheat pasta based on pearl millet flour containing barley and whey protein concentrate. J Food Sci Technol 51:2592–2599. doi:10.1007/s13197-012-0772-2

    Article  CAS  Google Scholar 

  • Yalçin AS (2006) Emerging therapeutic potential of whey proteins and peptides. Curr Pharm Des 12:1637–1643

    Article  Google Scholar 

  • Zhang Q-X, Ling Y-F, Sun Z, et al (2012) Protective effect of whey protein hydrolysates against hydrogen peroxide-induced oxidative stress on PC12 cells. Biotechnol Lett 34:2001–2006. doi:10.1007/s10529-012-1017-1

    Article  CAS  Google Scholar 

  • Zhao L, Huang Q, Huang S, et al (2014) Novel peptide with a specific calcium-binding capacity from whey protein hydrolysate and the possible chelating mode. J Agric Food Chem. doi:10.1021/jf502412f

    Google Scholar 

Download references

Conflict of interest

There is no conflict of interest in submission of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Patel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S. Emerging trends in nutraceutical applications of whey protein and its derivatives. J Food Sci Technol 52, 6847–6858 (2015). https://doi.org/10.1007/s13197-015-1894-0

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-015-1894-0

Keywords

Navigation