Skip to main content

Spacecraft Measurements of the Cosmic Dust Flux

  • Chapter

Abstract

Spacecraft measurements of the cosmic dust flux in space have determined the flux of meteoroids as a function of meteoroid mass at 1 AU. The measurements show that the total influx rate of meteoritic material to the entire Earth is about 40,000 tons per year, with nearly all of the meteoritic mass residing in grains with masses between 10−16 kg and 10−4 kg. Less than 25% of this mass is believed to derive from asteroids. Data from the Pioneer 8 and 9 spacecraft gave evidence for a flux of sub-micron grains (now called β meteoroids) leaving the solar system under radiation pressure at the rate of about 10 tons per second. A 1.5 × 10−4 m−2s−1 flux of interstellar grains, with a mean mass around 3 X 10−16 kg, has been found to be passing through the solar system by the Ulysses and Galileo spacecraft. These spacecraft have also sensed dust grains in orbit about Jupiter as well as dust escaping the Jovian system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, W. M. Cosmic dust. Nature 138, 1098–1099 (1962).

    Google Scholar 

  • Alexander, W. M, McCracken, C. W., and Bohn, J. L. Zodiacal dust: Measurements by Mariner IV Science 149, 1240–1241 (1965).

    Article  ADS  Google Scholar 

  • Alvarez, J. M. Statistical analysis of meteoroid penetration data including effects of cutoff. NASA TN D-5668(1970).

    Google Scholar 

  • Baguhl, M., Grün, E., Linkert, G., Linkert D., and Siddique, N. Identification of’ small’ dust impacts in the Ulysses dust detector data. Planet. Space Sci. 41, 1085–1098 (1993).

    Article  ADS  Google Scholar 

  • Berg, O. E. and Richardson, F. F. The Pioneer 8 cosmic dust experiment. Rev. Sci. lnstr. 40, No. 10, 1333–1337(1969).

    Article  ADS  Google Scholar 

  • Berg, O. E. and Grün, E. Evidence of hyperbolic cosmic dust particles. Space Res. 13, 1047–1055 (1973).

    Google Scholar 

  • Bohn, J. L. and Nadig, F. H. Researches in the physical properties of the upper atmosphere with special emphasis on acoustical studies with V-2 rockets. Res. Inst. Temple Univ., Reprint 8, 1–26 (1950).

    Google Scholar 

  • Burns, J. A., Lamy, P. L., and Soter, S. Radiation forces on small particles in the solar system. Icarus 40, 1–48 (1979).

    Article  ADS  Google Scholar 

  • Clifton, K. S. Meteoroid impacts. NASA TMX-53629, 3–7 (1967).

    Google Scholar 

  • D’Aiutolo, C. T., Kinard, W. H., and Naumann, R. J. Recent NASA meteoroid penetration results from satellites. NASA SP-135, 239–251 (1967).

    Google Scholar 

  • Dermott, S. F., Jayaraman, S., Xu, Y. L., Gustafson, B. Å S., and Liou, J.-C. A circumsolar ring of aster-oidal dust in resonant lock with the Earth. Nature 369, 719–723 (1994).

    Article  ADS  Google Scholar 

  • Divine, N. Five populations of interplanetary meteoroids. J. Geophys. Res. 98, 17,029–17,048 (1993).

    Article  ADS  Google Scholar 

  • Dohnanyi, J. S. Model distribution of photographic meteors. Bellcom Inc. Tech. Rept. No. 66-340-1 (1966).

    Google Scholar 

  • Dohnanyi, J. S. Interplanetary objects in review: Statistics of their masses and dynamics. Icarus 17, 1–48 (1972).

    Article  ADS  Google Scholar 

  • Dozier, J. B. V Meteoroid data recorded on Pegasus flights. NASA TN D-3505, 65–76 (1966).

    Google Scholar 

  • Dubin, M. Meteoritic dust measured from Explorer I. Planet. Space Sci. 2, 121–129 (1960).

    Article  ADS  Google Scholar 

  • Erickson, J. E. Velocity distribution of sporadic photographic meteors. J. Geophys. Res. 73, 3721–3726 (1968).

    Article  ADS  Google Scholar 

  • Grew, G. W. and Gurtler, C. A. The Lunar Orbiter meteoroid experiments: Description and results from five spacecraft. NASA TN D-6266 (1971).

    Google Scholar 

  • Grün, E., Zook, H. A., Fechtig, H., and Giese, R. H. Collisional balance of the meteoritic complex. Icarus 62, 244–272 (1985).

    Article  ADS  Google Scholar 

  • Grün, E., Fechtig, H., Hanner, M. S., Kissel, I, Lindblad, B. A., Linkert, D., Maas, D., Morfill, G. E., and Zook, H. A. The Galileo dust detector. Space Sci. Rev. 60, 317–340 (1992a).

    Article  ADS  Google Scholar 

  • Grün, E., Fechtig, H., Kissel, I, Linkert, D., Maas, D., McDonnell, J. A. M., Morfill, G. E., Schwehm, G., Zook, H. A., and Giese, R. H. The Ulysses dust experiment. Astron. Astrophys. Suppl. Ser. 92, 411–423 (1992b).

    ADS  Google Scholar 

  • Grün, E., Zook, H. A., Baguhl, M., Balogh, A., Bame, S. I, Fechtig, H., Forsyth, R., Hanner, M. S., Horányi, M., Kissel, J., Lindblad, B. A., Linkert, D., Linkert, G., Mann, I., McDonnell, J. A. M., Morfill, G. E., Phillips, J. L., Polanskey, C, Schwehm, G., Siddique, N., Staubach, P., Svestka, J., and Taylor, A. Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature 362,428–430(1993).

    Article  ADS  Google Scholar 

  • Grün, E., Gustafson, B., Mann, I., Baguhl, M., Morfill, G. E., Staubach, P., Taylor, A., and Zook, H. A. Interstellar dust in the heliosphere. Astron. Astrophys. 286, 915–924 (1994).

    ADS  Google Scholar 

  • Grün, E., Staubach, P., Baguhl, M., Hamilton, D. P., Zook, H. A., Dermott, S., Gustafson, B. A., Fechtig, H., Kissel, I, Linkert, D., Linkert, G., Srama, R., Hanner, M. S., Polanskey, C, Horänyi, M., Lindblad, B. A., Mann, I., McDonnell, J. A. M., Morfill, G. E., and Schwehm, G. South-North and radial traverses through the interplanetary dust cloud. Icarus 129, 270–288 (1997).

    Article  ADS  Google Scholar 

  • Grün, E., Krüger, H., Graps, A. L., Hamilton, D. P., Heck, A., Linkert, G., Zook, H. A., Dermott, S., Fechtig, H., Gustafson, B. A., Hanner, M. S., Horányi, M. Kissel, I, Lindblad, B. A., Linkert, G., Mann, I., McDonnell, J. A. M., Morfill, G. E., Polanskey, C, Schwehm, G., and Srama, R. Galileo observes electromagnetically coupled dust in the Jovian magnetosphere. J. Geophys. Res. 103, 20,011–20,022 (1998).

    Article  ADS  Google Scholar 

  • Gurtler, C. A. and Grew, G. W. Meteoroid hazard near the Moon. Science 161, 462–464 (1968).

    Article  ADS  Google Scholar 

  • Hastings, E. C, Jr. The Explorer XVI Micrometeoroid satellite-Description and preliminary results for the period December 16, 1962 through January 13, 1963. NASA TM X-810 (1963a).

    Google Scholar 

  • Hastings, E. C, Jr. The Explorer XVI micrometeoroid satellite, Supplement I: Preliminary results for the period January 14, 1963 through March 2, 1963. NASA TM X-824 (1963b).

    Google Scholar 

  • Hastings, E. C, Jr. The Explorer XVI micrometeoroid satellite, Supplement II: Preliminary results for the period March 3, 1963 through May 26, 1963. NASA TM X-89 (1963c).

    Google Scholar 

  • Hastings, E. C, Jr. The Explorer XVI Micrometeoroid satellite, Supplement III: Preliminary results for the period May 27, 1963 through July 22, 1963. NASA TM X-949 (1964).

    Google Scholar 

  • Hemenway, C. L., Hallgren, J. F., and Kerridge, J. F. Preliminary micrometeorite results from Gemini IX and XII. NASA SP-150, 147–153 (1967).

    ADS  Google Scholar 

  • Hibbs, A. R. The distribution of micrometeorites near the Earth. J. Geophys. Res. 66, No. 2, 371–377 (1961).

    Article  ADS  Google Scholar 

  • Horanyi, M., Grün E., and Heck, A. Modeling the Galileo dust measurements at Jupiter. Geophys. Res. Lett. 24, 2175–2178 (1997).

    Article  ADS  Google Scholar 

  • Hörz, F., Cintala, M., Bernhard, R. P., and See, T. H. Dimensionally scaled penetration experiments: Aluminum targets and glass projectiles 50 µrn to 3.2 µm in diameter. Intl. J. Impact Engng. 15, 257–280 (1984).

    Article  Google Scholar 

  • Hörz, F., Bernhard, R. P., See, T. H., and Brownlee, D. E. Natural and orbital debris particles on LDEF’s trailing and forward-facing surfaces. NASA CP 3275, Part 1, 415–429 (1993).

    Google Scholar 

  • Humes, D. H. Small craters on the meteoroid and space debris impact experiment. NASA CP 3275, Part 1, 287–322 (1993).

    Google Scholar 

  • Jackson, A. A. and Zook, H. A. A solar system dust ring with the Earth as its shepherd. Nature 337, 629–631 (1989).

    Article  ADS  Google Scholar 

  • Jackson, A. A. and Zook, H. A. Orbital evolution of dust particles from comets and asteroids. Icarus 97, 70–84(1992).

    Article  ADS  Google Scholar 

  • Johnson, W. G. I. Structural design and data systems of spacecraft. NASA TN D-3505, 4–17 (1966).

    Google Scholar 

  • Kessler, D. J. Average relative velocity of sporadic meteoroids in interplanetary space. Am. Inst. Aeronautics Astronautics J. 7 (12), 2337–2338 (1969).

    Google Scholar 

  • Konstantinov, B. P., Bredov, M. M., Mazets, E. P., Panov, V N., Aptekar’, R. L., Golenetskiy, S. V, Gur’yan, Yu.A., and ll’yinskiy, V N. Micrometeoric investigations aboard AES “Kosmos 135”. Goddard Space Flight Center Contract No. NAS-5-12487, ST-IM-10710, May 6, 1968 (See also reference to publica-tions in Russian in McDonnell, 1978) (1968).

    Google Scholar 

  • Komissarov, O. V, Nazarova, T. N., Neugodov, L. N., Poloskov, S. M., and Rusakov, L. Z. Investigations of micro-meteorites with the aid of rockets and satellites. J. Am. Rocket Soc. 29, 742–744 (1959).

    Google Scholar 

  • Krüger, H., Krivov, A. V, Hamilton, D. P., and Grün, E. Detection of an impact-generated dust cloud around Ganymede. Nature 399, 558–560 (1999).

    Article  ADS  Google Scholar 

  • Lagow, H. E. and Alexander, W. M. Recent direct measurements by satellites of cosmic dust in the vicinity of the Earth. NASA TN D-488 (1960).

    Google Scholar 

  • Landgraf, M., Augustsson, K, Grün, E., and Gustafson, B. Deflection of the local interstellar dust flow by solar radiation pressure. Science 286, 2319–2322 (1999).

    Article  ADS  Google Scholar 

  • Love, S. G. and Brownlee, D. E. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993).

    Article  ADS  Google Scholar 

  • Mazets, E. P. Cosmic dust and meteor showers. Paper e.25 submitted to the XIII Plenary Meeting of COSPAR (also as Preprint 266 of the Academy of Sciences of the USSR, A. F. Ioffe Phisico-Technical Institute, Leningrad), 15 pp. (1970).

    Google Scholar 

  • McDonnell, J. A. M. Review of in situ measurements of cosmic dust particles in space. Space Res. 11, 415–435 (1971).

    Google Scholar 

  • McDonnell, J. A. M. Microparticle studies by space instrumentation. In Cosmic Dust (McDonnell, J. A. M., Ed.), Wiley, New York, 337–426 (1978).

    Google Scholar 

  • McDonnell, J. A. M., Berg, O. E., and Richardson, F. F. Spatial and time variations of the interplanetary microparticle flux analyzed from deep space probes Pioneer 8 and 9. Planet. Space Sci. 23, 205–214 (1975).

    Article  ADS  Google Scholar 

  • Naumann, R. J. The near-Earth meteoroid environment. NASA TN D-3717 (1966).

    Google Scholar 

  • Nilsson, C. Some doubts about the Earth’s dust cloud. Science 153, 1242–1246 (1966).

    Article  ADS  Google Scholar 

  • Oliver, J. P., Singer, S. F., Weinberg, J. L., Simon, C. G., Cooke, W. J., Kassel, P. C., Kinard, W. H., Mulholland, J. D., and Wortman, J. J. LDEF interplanetary dust experiment (IDE) results. NASA CP 3275, Part 1, 353–360 (1993).

    Google Scholar 

  • O’Neal, R. L. The Explorer XXIII micrometeoroid satellite—Supplement III, Preliminary results for the period Nov. 6, 1964 through February 15, 1965. NASA TM X-1123 (1965).

    Google Scholar 

  • O’Neal, R. L. The Explorer XXIII micrometeoroid satellite. NASA TN D-4284 (1968).

    Google Scholar 

  • Reach, W. T., Franz, B. A., Weiland, J. L., Hauser, M. G., Kelsall, T. N., Wright, E. L., Rawley, G., Stemwedel, S. W, and Spiesman, W. J. Observational confirmation of a circumsolar dust ring by the COBE satellite. Nature 374, 521–523 (1995).

    Article  ADS  Google Scholar 

  • Rhee, J. W, Berg, O. E., and Richardson, F. F. Heliocentric distribution of cosmic dust intercepted by Pioneer 8 and 9. Geophys. Res. Lett. 1, No. 8, 345–346 (1974).

    Article  ADS  Google Scholar 

  • Smith, M. J., III. Meteoroid detector development and testing. NASA TN D-3505, 29–54 (1966).

    Google Scholar 

  • Whipple, F. L. Particulate contents of space. In Medical and biological aspects of the energies of space (Campell, P. H., Ed.), Columbia Univ. Press, New York, 49–70 (1961a).

    Google Scholar 

  • Whipple, F. L. The dust cloud about the Earth. Nature 189, 127–128 (1961b).

    Article  ADS  Google Scholar 

  • Whipple, F. L. On maintaining the meteoritic complex. NASA SP-150, 409–426 (1967).

    ADS  Google Scholar 

  • Whipple, F. L. Sources of interplanetary dust. In Interplanetary dust and zodiacal light (Elsässer, H. and Fechtig, H., Eds.), Springer, New York, 403–415 (1976).

    Google Scholar 

  • Zhang, J. and Kessler, D. J. Orbital debris and meteoroid population as estimated from LDEF impact data. NASA CP 3275, Part 1, 373–384 (1993).

    Google Scholar 

  • Zook, H. A. Hyperbolic cosmic dust: Its origin and its astrophysical significance. Planet. Space Sci. 23, 1391–1397 (1975a).

    Article  ADS  Google Scholar 

  • Zook, H. A. The state of meteoritic material on the moon. Proc. Lunar Sci. Conf. 4, 1653–1672 (1975b).

    ADS  Google Scholar 

  • Zook, H. A. Temporal and spatial variations of the interplanetary dust flux. Space Res. 18,411–422 (1978).

    Google Scholar 

  • Zook, H. A. Deriving the velocity distribution of meteoroids from the measured meteoroid impact directionality on the various LDEF surfaces. NASA CP 3134, Part 1, 569–579 (1991).

    Google Scholar 

  • Zook, H. A. and Berg, O. E. A source for hyperbolic cosmic dust particles. Planet. Space Sci. 23, 183–203 (1975).

    Article  ADS  Google Scholar 

  • Zook, H. A., Flaherty, R. E., and Kessler, D. J. Meteoroid impacts on the Gemini windows. Planet. Space Sci. 18, 953–964 (1970).

    Article  ADS  Google Scholar 

  • Zook, H. A., Grün, E., Baguhl, M., Hamilton, D. P., Linkert, G., Linkert, D., Liou, J.-C, Forsyth, R., and Phillips, J. L. Solar wind magnetic field bending of Jovian dust trajectories. Science 274, 1501–1503 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zook, H.A. (2001). Spacecraft Measurements of the Cosmic Dust Flux. In: Peucker-Ehrenbrink, B., Schmitz, B. (eds) Accretion of Extraterrestrial Matter Throughout Earth’s History. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8694-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8694-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4668-5

  • Online ISBN: 978-1-4419-8694-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics