Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases

Abstract

Homozygosity for the naturally occurring Δ32 deletion in the HIV co-receptor CCR5 confers resistance to HIV-1 infection. We generated an HIV-resistant genotype de novo using engineered zinc-finger nucleases (ZFNs) to disrupt endogenous CCR5. Transient expression of CCR5 ZFNs permanently and specifically disrupted 50% of CCR5 alleles in a pool of primary human CD4+ T cells. Genetic disruption of CCR5 provided robust, stable and heritable protection against HIV-1 infection in vitro and in vivo in a NOG model of HIV infection. HIV-1-infected mice engrafted with ZFN-modified CD4+ T cells had lower viral loads and higher CD4+ T-cell counts than mice engrafted with wild-type CD4+ T cells, consistent with the potential to reconstitute immune function in individuals with HIV/AIDS by maintenance of an HIV-resistant CD4+ T-cell population. Thus adoptive transfer of ex vivo expanded CCR5 ZFN–modified autologous CD4+ T cells in HIV patients is an attractive approach for the treatment of HIV-1 infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ZFN-mediated disruption of CCR5 and protection from HIV-1 infection in GHOST-CCR5 cells.
Figure 2: In vitro selection of CCR5-disrupted cells following HIV-1 challenge of the CD4+ T-cell line, PM1.
Figure 3: Enrichment of CCR5 ZFN–modified primary CD4+ T cells during in vitro HIV-1 challenge.
Figure 4: Reduction in viremia and selection for CCR5 ZFN–modified CD4+ T cells in the presence of HIV-1 challenge in vivo.

Similar content being viewed by others

References

  1. Deng, H.K. et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661–666 (1996).

    Article  CAS  Google Scholar 

  2. Alkhatib, G. et al. Cc Ckrs: A Rantes, Mip-1 Alpha, Mip-1 Beta Receptor As A Fusion Cofactor for Macrophage-Tropic HIV-1. Science 272, 1955–1958 (1996).

    Article  CAS  Google Scholar 

  3. Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377 (1996).

    Article  CAS  Google Scholar 

  4. Samson, M. et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382, 722–725 (1996).

    Article  CAS  Google Scholar 

  5. Huang, Y.X. et al. The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat. Med. 2, 1240–1243 (1996).

    Article  CAS  Google Scholar 

  6. Lederman, M.M. et al. Prevention of vaginal SHIV transmission in rhesus macaques through inhibition of CCR5. Science 306, 485–487 (2004).

    Article  CAS  Google Scholar 

  7. Mosier, D.E. et al. Highly potent RANTES analogues either prevent CCR5-using human immunodeficiency virus type 1 infection in vivo or rapidly select for CXCR4-using variants. J. Virol. 73, 3544–3550 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fatkenheuer, G. et al. Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1. Nat. Med. 11, 1170–1172 (2005).

    Article  Google Scholar 

  9. Kuhmann, S.E. et al. Genetic and phenotypic analyses of human immunodeficiency virus type 1 escape from a small-molecule CCR5 inhibitor. J. Virol. 78, 2790–2807 (2004).

    Article  CAS  Google Scholar 

  10. Abad, J.L. et al. Novel interfering bifunctional molecules against the CCR5 coreceptor are efficient inhibitors of HIV-1 infection. Mol. Ther. 8, 475–484 (2003).

    Article  CAS  Google Scholar 

  11. Bai, J.R. et al. Characterization of anti-CCR5 ribozyme-transduced CD34(+) hematopoietic progenitor cells in vitro and in a SCID-hu mouse model in vivo. Mol. Ther. 1, 244–254 (2000).

    Article  CAS  Google Scholar 

  12. Barassi, C. et al. Induction of murine mucosal CCR5-reactive antibodies as an anti-human immunodeficiency virus strategy. J. Virol. 79, 6848–6858 (2005).

    Article  CAS  Google Scholar 

  13. Levine, B.L. et al. Adoptive transfer of costimulated CD4(+) T cells induces expansion of peripheral T cells and decreased CCR5 expression in HIV infection. Nat. Med. 8, 47–53 (2002).

    Article  CAS  Google Scholar 

  14. Qin, X.F., An, D.S., Chen, I.S.Y. & Baltimore, D. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc. Natl. Acad. Sci. USA 100, 183–188 (2003).

    Article  CAS  Google Scholar 

  15. Steinberger, P., Andris-Widhopf, J., Buhler, B., Torbett, B.E. & Barbas, C.F. Functional deletion of the CCR5 receptor by intracellular immunization produces cells that are refractory to CCR5-dependent HIV-1 infection and cell fusion. Proc. Natl. Acad. Sci. USA 97, 805–810 (2000).

    Article  CAS  Google Scholar 

  16. Urnov, F.D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005).

    Article  CAS  Google Scholar 

  17. Moore, M., Choo, Y. & Klug, A. Design of polyzinc finger peptides with structured linkers. Proc. Natl. Acad. Sci. USA 98, 1432–1436 (2001).

    Article  CAS  Google Scholar 

  18. Jamieson, A.C., Miller, J.C. & Pabo, C.O. Drug discovery with engineered zinc-finger proteins. Nat. Rev. Drug Discov. 2, 361–368 (2003).

    Article  CAS  Google Scholar 

  19. Smith, J. et al. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 28, 3361–3369 (2000).

    Article  CAS  Google Scholar 

  20. Bibikova, M., Golic, M., Golic, K.G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lloyd, A., Plaisier, C.L., Carroll, D. & Drews, G.N. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis . Proc. Natl. Acad. Sci. USA 102, 2232–2237 (2005).

    Article  CAS  Google Scholar 

  22. Jasin, M. Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet. 12, 224–228 (1996).

    Article  CAS  Google Scholar 

  23. Valerie, K. & Povirk, L.F. Regulation and mechanisms of mammalian double-strand break repair. Oncogene 22, 5792–5812 (2003).

    Article  CAS  Google Scholar 

  24. Morner, A. et al. Primary human immunodeficiency virus type 2 (HIV-2) isolates, like HIV-1 isolates, frequently use CCR5 but show promiscuity in coreceptor usage. J. Virol. 73, 2343–2349 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Schroers, R. et al. Gene transfer into human T lymphocytes and natural killer cells by Ad5/F35 chimeric adenoviral vectors. Exp. Hematol. 32, 536–546 (2004).

    Article  CAS  Google Scholar 

  26. Hung, C.S., Vander Heyden, N. & Ratner, L. Analysis of the critical domain in the V3 loop of human immunodeficiency virus type 1 gp120 involved in CCR5 utilization. J. Virol. 73, 8216–8226 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bibikova, M. et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell. Biol. 21, 289–297 (2001).

    Article  CAS  Google Scholar 

  28. Bitinaite, J., Wah, D.A., Aggarwal, A.K. & Schildkraut, I. FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA 95, 10570–10575 (1998).

    Article  CAS  Google Scholar 

  29. Schultz, L.B., Chehab, N.H., Malikzay, A. & Halazonetis, T.D. p53 Binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J. Cell Biol. 151, 1381–1390 (2000).

    Article  CAS  Google Scholar 

  30. Thiriet, C. & Hayes, J.J. Chromatin in need of a fix: Phosphorylation of H2AX connects chromatin to DNA repair. Mol. Cell 18, 617–622 (2005).

    Article  CAS  Google Scholar 

  31. Tsukuda, T., Fleming, A.B., Nickoloff, J.A. & Osley, M.A. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae . Nature 438, 379–383 (2005).

    Article  CAS  Google Scholar 

  32. Peters, W., Dupuis, M. & Charo, I.F. A mechanism for the impaired IFN-gamma production in C–C chemokine receptor 2 (CCR2) knockout mice: Role of CCR2 in linking the innate and adaptive immune responses. J. Immunol. 165, 7072–7077 (2000).

    Article  CAS  Google Scholar 

  33. Smith, M.W. et al. CCR2 chemokine receptor and AIDS progression. Nat. Med. 3, 1052–1053 (1997).

    Article  CAS  Google Scholar 

  34. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article  CAS  Google Scholar 

  35. Watanabe, S. et al. Hematopoietic stem cell-engrafted NOD/SCID/IL2Rgamma null mice develop human lymphoid systems and induce long-lasting HIV-1 infection with specific humoral immune responses. Blood 109, 212–218 (2007).

    Article  CAS  Google Scholar 

  36. An, D.S. et al. Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates. Proc. Natl. Acad. Sci. USA 104, 13110–13115 (2007).

    Article  CAS  Google Scholar 

  37. Trkola, A. et al. HIV-1 escape from a small molecule, CCR5-specific entry inhibitor does not involve CXCR4 use. Proc. Natl. Acad. Sci. USA 99, 395–400 (2002).

    Article  CAS  Google Scholar 

  38. Rossi, J.J., June, C.H. & Kohn, D.B. Genetic therapies against HIV. Nat. Biotechnol. 25, 1444–1454 (2007).

    Article  CAS  Google Scholar 

  39. Levine, B.L. et al. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc. Natl. Acad. Sci. USA 103, 17372–17377 (2006).

    Article  CAS  Google Scholar 

  40. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  Google Scholar 

  41. Zhang, Y., Joe, G., Hexner, E., Zhu, J. & Emerson, S.G. Host-reactive CD8(+) memory stem cells in graft-versus-host disease. Nat. Med. 11, 1299–1305 (2005).

    Article  CAS  Google Scholar 

  42. Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 25, 1298–1306 (2007).

    Article  CAS  Google Scholar 

  43. Isalan, M., Klug, A. & Choo, Y. A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat. Biotechnol. 19, 656–660 (2001).

    Article  CAS  Google Scholar 

  44. Isalan, M. & Choo, Y. Rapid, high-throughput engineering of sequence-specific zinc finger DNA-binding proteins. Methods Enzymol. 340, 593–609 (2001).

    Article  CAS  Google Scholar 

  45. Bibikova, M., Beumer, K., Trautman, J.K. & Carroll, D. Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764 (2003).

    Article  CAS  Google Scholar 

  46. Porteus, M.H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003).

    Article  Google Scholar 

  47. Smith, J., Berg, J.M. & Chandrasegaran, S. A detailed study of the substrate specificity of a chimeric restriction enzyme. Nucleic Acids Res. 27, 674–681 (1999).

    Article  CAS  Google Scholar 

  48. Miller, J.C. et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 25, 778–785 (2007).

    Article  CAS  Google Scholar 

  49. Nilsson, M. et al. Development of an adenoviral vector system with adenovirus serotype 35 tropism; efficient transient gene transfer into primary malignant hematopoietic cells. J. Gene Med. 6, 631–641 (2004).

    Article  CAS  Google Scholar 

  50. Lusso, P. et al. Growth of macrophage-tropic and primary human-immunodeficiency virus type 1 (HIV-1) isolates in a unique CD4+ T-cell clone (PM1): failure to downregulate CD4 and to interfere with cell-line-tropic HIV-1. J. Virol. 69, 3712–3720 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Morner, A. et al. Primary human immunodeficiency virus type 2 (HIV-2) isolates, like HIV-1 isolates, frequently use CCR5 but show promiscuity in coreceptor usage. J. Virol. 73, 2343–2349 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research supported in part by National Institutes of Health, a grant from ATP NIST and the Abramson Family Cancer Research Institute. Elena Perez was supported by K08AI062468 for this work. The authors are grateful for constructive comments from Frederick Bushman, for help by Anthony Secreto and other lab members, for support from the Center for AIDS Research Cores, for advice from Bruce Levine and Gwen Binder, for bioinformatics support from Beilin Zhang, for analysis of the V3 loop data by Toby Dylan Hocking, and for experimental assistance from Gwenn-aël H. Danet-Desnoyers and the Xenograft Core Facility at the University of Pennsylvania School of Medicine, Erica Moehle, Jeremy Rock, Lei Zhang, Shuyuan Yao, Nhu Tran, Matthew Mendel, Deng Xia and Sarah Hinkley and members of the Sangamo production group, Melody Hung-Fan and the Contra Costa Public Health Lab for HIV RNA analyses, for pAdEasy-1/F35 vector provided by Xiaolong Fong, and at Bioqual Inc., Mark Lewis and Jake Yalley-Ogunro. CXCR4 tropic HIV-1BK132 and CCR5 tropic strains, US-1 were from John Mascola (Vaccine Research Center, NIH, Bethesda, Maryland), and Bal-1 was from Suzanne Gartner (Johns Hopkins, Baltimore). The following reagent was obtained through the NIH AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH: (GHOST (3) Hi-5 and GHOST (3) CXCR4) from Vineet N. KewalRamani and Dan R. Littman.

Author information

Authors and Affiliations

Authors

Contributions

E.E.P., Y.J., J.W., O.L., C.C., K.A.K., J.S.O., J.C.M., V.V.B., D.Y.G., I.R., A.J.W., Y.-L.L., N.W., G.L., F.D.U. and E.J.R. designed and performed experiments; R.G.C., D.A. and P.D.G. assisted with experimental design; J.L.R., M.C.H., P.D.G. and C.H.J. are co-senior authors; E.E.P., M.C.H., P.D.G. and C.H.J. wrote the manuscript.

Corresponding author

Correspondence to Carl H June.

Ethics declarations

Competing interests

J.W., Y.J., J.C.M., K.A.K. N.W., G.L., V.V.B., Y.-L.L., D.Y.G., I.R., A.J.W., F.D.U., E.J.R., D.A., P.D.G. and M.C.H. are or were employees of Sangamo Biosciences.

Supplementary information

Supplementary Text and Figures

Figures 1–8 (PDF 1204 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez, E., Wang, J., Miller, J. et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26, 808–816 (2008). https://doi.org/10.1038/nbt1410

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1410

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing